Functional connections between auditory cortex on Heschl's gyrus and on the lateral superior temporal gyrus in humans.
نویسندگان
چکیده
Functional connections between auditory fields on Heschl's gyrus (HG) and the acoustically responsive posterior lateral superior temporal gyrus (field PLST) were studied using electrical stimulation and recording methods in patients undergoing diagnosis and treatment of intractable epilepsy. Averaged auditory (click-train) evoked potentials were recorded from multicontact subdural recording arrays chronically implanted over the lateral surface of the superior temporal gyrus (STG) and from modified depth electrodes inserted into HG. Biphasic electrical pulses (bipolar, constant current, 0.2 ms) were delivered to HG sites while recording from the electrode array over acoustically responsive STG cortex. Stimulation of sites along the mediolateral extent of HG resulted in complex waveforms distributed over posterolateral STG. These areas overlapped each other and field PLST. For any given HG stimulus site, the morphology of the electrically evoked waveform varied across the STG map. A characteristic waveform was recorded at the site of maximal amplitude of response to stimulation of mesial HG [presumed primary auditory field (AI)]. Latency measurements suggest that the earliest evoked wave resulted from activation of connections within the cortex. Waveforms changed with changes in rate of electrical HG stimulation or with shifts in the HG stimulus site. Data suggest widespread convergence and divergence of input from HG to posterior STG. Evidence is presented for a reciprocal functional projection, from posterolateral STG to HG. Results indicate that in humans there is a processing stream from AI on mesial HG to an associational auditory field (PLST) on the lateral surface of the superior temporal gyrus.
منابع مشابه
Auditory cortex on the human posterior superior temporal gyrus.
The human superior temporal cortex plays a critical role in hearing, speech, and language, yet its functional organization is poorly understood. Evoked potentials (EPs) to auditory click-train stimulation presented binaurally were recorded chronically from penetrating electrodes implanted in Heschl's gyrus (HG), from pial-surface electrodes placed on the lateral superior temporal gyrus (STG), o...
متن کاملMapping an intrinsic MR property of gray matter in auditory cortex of living humans: a possible marker for primary cortex and hemispheric differences.
Recently, magnetic resonance properties of cerebral gray matter have been spatially mapped--in vivo--over the cortical surface. In one of the first neuroscientific applications of this approach, this study explores what can be learned about auditory cortex in living humans by mapping longitudinal relaxation rate (R1), a property related to myelin content. Gray matter R1 (and thickness) showed r...
متن کاملLateralization of ventral and dorsal auditory-language pathways in the human brain.
Recent electrophysiological investigations of the auditory system in primates along with functional neuroimaging studies of auditory perception in humans have suggested there are two pathways arising from the primary auditory cortex. In the primate brain, a 'ventral' pathway is thought to project anteriorly from the primary auditory cortex to prefrontal areas along the superior temporal gyrus w...
متن کاملSerial and parallel processing in the human auditory cortex: a magnetoencephalographic study.
Although anatomical, histochemical and electrophysiological findings in both animals and humans have suggested a parallel and serial mode of auditory processing, precise activation timings of each cortical area are not well known, especially in humans. We investigated the timing of arrival of signals to multiple cortical areas using magnetoencephalography in humans. Following click stimuli appl...
متن کاملHemispheric specialization for processing auditory nonspeech stimuli.
The left hemisphere specialization for speech perception might arise from asymmetries at more basic levels of auditory processing. In particular, it has been suggested that differences in "temporal" and "spectral" processing exist between the hemispheres. Here we used functional magnetic resonance imaging to test this hypothesis further. Fourteen healthy volunteers listened to sequences of alte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 90 6 شماره
صفحات -
تاریخ انتشار 2003